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Free convection in a liquid-encapsulated
molten semiconductor in a vertical magnetic field
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Abstract

This paper treats the free convection in a layer of boron oxide, called a liquid encapsulant, which lies above a layer of
a molten compound semiconductor (melt) between cold and hot vertical walls in a rectangular container with a steady
vertical magnetic field. The magnetic field provides an electromagnetic (EM) damping of the molten semiconductor
which is an excellent electrical conductor but has no direct effect on the motion of the liquid encapsulant. The compe-
tition between the two free convections determines the direction of the velocity of the interface.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Electronic and optical devices are fabricated on
wafers sliced from single-crystal ingots of compound
semiconductor crystals. Since the performance of any
device depends critically on the uniformity of the local
concentration in the wafer on which it is produced, a
major objective during the solidification of any semicon-
ductor crystal is to minimize segregation in the crystal.
The segregation in the crystal depends on the diffusive
and convective transport of species in the melt, which
depends on the motion of the molten semiconductor
(melt). Since molten semiconductors are excellent electri-
cal conductors, the melt motion can be damped and con-
trolled by a steady (DC) magnetic field in order to
control the species distribution in the crystal.
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During the magnetic liquid-encapsulated Czochralski
(MLEC) growth of compound semiconductor crystals,
such as indium–phosphide (InP), phosphorus gas is bub-
bled at high pressure through an indium melt, and the
indium and phosphorus fuse to form the compound
InP. A layer of boron oxide (B2O3) encapsulates the melt
to prevent escape of the volatile component (P). A sin-
gle-crystal seed is lowered through the encapsulant
which initiates solidification and crystal growth begins
in the presence of an externally applied vertical magnetic
field. This is an extremely important process because it
was the first to produce 8-cm diameter twin-free in-
dium–phosphide crystals which was accomplished by
using magnetic stabilization [1,2]. Morton et al. [3] pre-
sented a model of dopant transport during the MLEC
process. Understanding transport mechanisms during
this important process has motivated studies of simpli-
fied two-dimensional flows which capture the basic
physics that may be analogous to flows in an azimuthal
plane in a realistic cylindrical system. Previous research-
ers have investigated the effect of a steady magnetic field
on free convection in rectangular enclosures [4–11].
ed.

mailto:nancy_ma@ncsu.edu


Nomenclature

B magnetic flux density
cp specific heat in the melt
cpe specific heat in the liquid encapsulant
g gravitational acceleration
Ha Hartmann number in the melt
j dimensionless electric current density
jz dimensionless electric current density in the

z direction
k thermal conductivity of the melt
ke thermal conductivity of the liquid encapsu-

lant
L width of molten semiconductor or liquid

encapsulant
N interaction parameter in the melt
p dimensionless pressure in the melt
pe dimensionless pressure in the liquid encaps-

ulant
Pet thermal Péclet number in the melt
Pete thermal Péclet number in the liquid encaps-

ulant
Re Reynolds number in the liquid encapsulant
Rm magnetic Reynolds number in the melt
T dimensionless temperature in the melt
Te dimensionless temperature in the liquid

encapsulant
Tc temperature of the cold wall
Th temperature of the hot wall
U characteristic velocity in the melt
Ue characteristic velocity in the encapsulant
u horizontal component of the dimensionless

melt velocity
ue horizontal component of the dimensionless

liquid-encapsulant velocity
v vertical component of the dimensionless

melt velocity
ve vertical component of the dimensionless

liquid-encapsulant velocity
v̂ dimensionless velocity in the melt
v̂e dimensionless velocity in the liquid encapsu-

lant

x dimensionless horizontal coordinate
x̂ unit vector in the horizontal direction for

the Cartesian coordinate system
Y dimensionless vertical coordinate
ŷ unit vector in the vertical direction for the

Cartesian coordinate system

Greek symbols

(DT) difference between the hot wall�s tempera-
ture and the cold wall�s temperature

a dimensionless depth of the melt
b thermal volumetric expansion coefficient of

the melt
be thermal volumetric expansion coefficient of

the liquid encapsulant
v rescaled dimensionless vertical coordinate in

the liquid encapsulant
g rescaled dimensionless vertical coordinate in

the melt
/ dimensionless electric potential in the melt
c dimensionless depth of the melt, plus the

dimensionless depth of the liquid encapsu-
lant

kb ratio of the density times the thermal volu-
metric expansion coefficient in the liquid
encapsulant to that in the melt

kk thermal conductivity of the liquid encapsu-
lant divided by the thermal conductivity of
the melt

kl dynamic viscosity of the liquid encapsulant
divided by the dynamic viscosity of the melt

q density of the melt
qe density of the liquid encapsulant
l dynamic viscosity of the melt
le dynamic viscosity of the liquid encapsulant
lp magnetic permeability of the melt
r electrical conductivity of the melt
n rescaled dimensionless horizontal coordi-

nate
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In particular, Garandet et al. [9] and Alchaar et al. [10]
treated two-dimensional free convection in a rectangular
enclosure with a vertical magnetic field. Previous re-
search which has treated systems that have liquid encap-
sulation have neglected any coupling between the free
convections in the molten semiconductor and in the li-
quid encapsulant and assumed that the liquid encapsu-
lant is stagnant [12,13]. Recently, Farrell and Ma [14]
used an asymptotic analysis in order to investigate the
interaction between the melt and the encapsulant in a
rectangular enclosure with strong magnetic fields. Series
and Hurle [15] and Walker [16] have reviewed the use of
magnetic fields during semiconductor crystal growth.

Previously, we treated the simplified asymptotic
equations which are valid for a strong magnetic field
for which Ha � 1 [14]. Here, the Hartmann number is
Ha = BL(r/l)1/2 where B is the magnetic flux density
and L is the width of the molten semiconductor (melt)
or liquid encapsulant while r and l are the melt�s electri-
cal conductivity and dynamic viscosity, respectively. We
investigated the coupling between the free convection in
the liquid encapsulant and the molten semiconductor in



γ

αyyB

Fig. 1. Two-dimensional problem with a liquid encapsulant
and molten semiconductor with a uniform, steady, vertical
magnetic field Bŷ and with coordinates normalized by the
distance between the hot and cold vertical walls.
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a rectangular enclosure with a strong horizontal mag-
netic field. For a strong magnetic field, we were justified
in neglecting effects of inertia and convective heat trans-
fer [17]. In an asymptotic solution for the inertialess con-
vectionless melt motion for Ha � 1, the melt is divided
into (i) an inviscid core region, (ii) Hartmann layers with
an O(Ha�1) thickness carrying an O(Ha�1) flow adja-
cent to the bottom wall and adjacent to the encapsu-
lant–melt interface, and (iii) parallel layers with an
O(Ha�1/2) thickness carrying an O(Ha1/2) flow adjacent
to the hot and cold walls. The Hartmann layers have a
simple, local, exponential structure, match any vertical
core or parallel layer velocities, and satisfy the boundary
conditions along the bottom wall and along the encaps-
ulant–melt interface. We consistently neglected an
O(Ha�1) perturbation, neglected the Hartmann layers
and relaxed the no-slip conditions along the core adja-
cent to the hot and cold walls.

In the present study, we investigate the free convec-
tion in the same configuration as Farrell and Ma [14].
This is a highly idealized model involving a two-dimen-
sional flow. This investigation is very different from our
previous asymptotic treatment because we use a numer-
ical approach to treat the full equations in the entire vol-
ume of the melt so that our solution is valid for any
value of the magnetic field strength. We no longer use
any asymptotic approximation to treat any subregions
of the flow. We present results for a range of magnetic
field strengths and compare the results to the asymptotic
solution of Farrell and Ma [14].
Table 1
Thermophysical properties of molten InP and B2O3

Property Molten InP B2O3

Viscosity (Pa s) 8.19 · 10�4 10
Density (kg/m3) 5050 1530
Specific heat (J/kg K) 424 1864.3
Thermal conductivity (W/m K) 22.8 2.0
Thermal volumetric
expansion coefficient (K�1)

4.44 · 10�4 7.5 · 10�5

Electrical conductivity (X�1m�1) 7 · 105 0.0
2. Problem formulation

This paper treats the two-dimensional free convec-
tion in two layers of fluid with a molten semiconductor
(melt) encapsulated by a layer of boron oxide in a steady
horizontal or transverse magnetic field Bŷ. Here, B is the
magnetic flux density while x̂ and ŷ are the unit vectors
for the Cartesian coordinate system. Our dimensionless
problem is sketched in Fig. 1. The coordinates and
lengths are normalized by the length of the melt or bor-
on oxide L, so that a and (c � a) are the dimensionless
depths of the melt and boron oxide, respectively. Along
x = 0 and x = 1, the liquids are maintained at tempera-
tures Tc and Th, respectively, where Th > Tc. The bound-
aries at y = 0 and y = c are thermal insulators. Here, the
fluid flows are driven by the temperature difference so
that the characteristic velocities for the free convection
in the melt [18] and in the encapsulant are

U ¼ qgbðDT Þ
rB2

; ð1aÞ

U e ¼
qegbeðDT ÞL2

le

; ð1bÞ
respectively, where (DT) = Th � Tc is the characteristic
temperature difference and g is gravitational accelera-
tion. Here, q, b and r are the density, thermal volumet-
ric expansion coefficient and electrical conductivity of
the melt while qe, be and le are the density, thermal vol-
umetric expansion coefficient and dynamic viscosity of
the encapsulant. We use the thermophysical properties
of molten indium–phosphide and boron oxide, as shown
in Table 1. With (DT) = 50 K and L = 5 cm [14], the
characteristic velocity in the encapsulant is Ue =
0.014065 m/s while the characteristic velocity in the melt
is 0.006282 or 0.00006284 m/s for B = 0.5 or 5 T,
respectively.

The electric current in the melt produces an induced
magnetic field which is superimposed upon the applied
magnetic field produced by the external magnet. The
characteristic ratio of the induced to applied magnetic
field strengths is the magnetic Reynolds number,
Rm = lprUL, where lp is the magnetic permeability of
the melt. For all crystal-growth processes, Rm � 1 and
the additional magnetic fields produced by the electric
currents in the melt are negligible.

Using the Boussinesq approximation, the free con-
vection in the melt is governed by

N�1ðv � rÞv ¼ �rp þ T ŷþ j
 ŷþ Ha�2r2v; ð2aÞ

r � v ¼ 0; ð2bÞ
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r � j ¼ 0; ð2cÞ

j ¼ �r/ þ v
 ŷ; ð2dÞ

Petðv � rÞT ¼ r2T ; ð2eÞ

where v ¼ ux̂þ vŷ is the melt�s velocity normalized by U,
p is the deviation from hydrostatic pressure normalized
by qgb(DT)L, j is the electric current density normalized
by rUB, / is the electric potential normalized by UBL,
and T is the deviation of the melt�s temperature from
Tc normalized by (DT). Eq. (2a) is the Navier–Stokes
equation the interaction parameter N = rb2L/qU is the
characteristic ratio of the electromagnetic (EM) body
force term to the inertial terms. Eqs. (2b) and (2c) are
conservation of mass and electric current, respectively.
Eq. (2d) is Ohm�s law for a vertical magnetic field. Eq.
(2e) is the energy equation where the thermal Péclet
number Pet = qcpUL/k is the characteristic ratio of con-
vective to conductive heat transfer. Here, cp and k are
the melt�s specific heat and thermal conductivity,
respectively.

For the present plane recirculating flow in the melt,
the condition of zero net electric current in the z direc-
tion in combination with electrically insulating bound-
aries implies that the electric field is zero [19]. The only
non-zero component of the electric current density, nor-
malized by rUB, is given by Ohm�s law, jz = u. For the
present two-dimensional flow, this condition is very
simple. In a real three-dimensional flow, electric currents
in the z direction would close somewhere and generate
a much more complex distribution of the electric poten-
tial /.

With the Boussinesq approximation, the free convec-
tion in the encapsulant is governed by

Reðve � rÞve ¼ �rpe þ T eŷþr2ve; ð3aÞ

r � ve ¼ 0; ð3bÞ

Peteðv � rÞT e ¼ r2T e; ð3cÞ

where ve ¼ uex̂þ veŷ is the encapsulant�s velocity nor-
malized by Ue, pe is the deviation of the encapsulant�s
pressure from the hydrostatic pressure normalized by
leUe/L, and Te is the deviation of the encapsulant�s tem-
perature from Tc normalized by (DT). Here, le is the dy-
namic viscosity of the liquid encapsulant. Eq. (3a) is the
Navier–Stokes equation where the Reynolds number
Re = qeUeL/le is the characteristic ratio of the inertial
force to the viscous force in the encapsulant. Here, qe

is the encapsulant�s density. Eq. (3b) is conservation of
mass. Eq. (3c) is the energy equation where the encaps-
ulant�s thermal Péclet number Pete = qecpeUeL/ke is the
characteristic ratio of convective to conductive heat
transfer in the encapsulant. Here, cpe and ke are the spe-
cific heat and thermal conductivity of the encapsulant,
respectively.
We apply the no-slip and no-penetration conditions
along the walls at x = 0, x = 1, y = 0 and y = c. Along
the planar interface, the no-slip and no-penetration con-
ditions [14] are

uðx; aÞ ¼ kb

kl
Ha2ueðx; aÞ; for 0 6 x 6 1; ð4aÞ

vðx; aÞ ¼ 0; for 0 6 x 6 1; ð4bÞ

veðx; aÞ ¼ 0; for 0 6 x 6 1; ð4cÞ

where kb = qebe/(qb) and kl = le/l. With boron oxide
and molten indium–phosphide, kb = 0.051177 and
kl = 12210. The stress is continuous across the interface
[14] so that

ou
oy

ðx; aÞ ¼ kbHa2
oue
oy

ðx; aÞ; for 0 6 x 6 1. ð5Þ

Here, the gradients of the interfacial tension due to gra-
dients of the temperature or of concentration along the
encapsulant–melt interface are negligible [14].

The temperatures along x = 0 and x = 1 are the cold
and hot wall temperatures, respectively, while the top
and bottom of the container are insulated. The temper-
ature and heat transfer in the melt and in the encapsu-
lant are continuous across y = a. Therefore, the
thermal boundary conditions are

T ð0; yÞ ¼ 0; for 0 6 y 6 a; ð6aÞ

T eð0; yÞ ¼ 0; for a 6 y 6 c; ð6bÞ

T ð1; yÞ ¼ 1; for 0 6 y 6 a; ð6cÞ

T eð1; yÞ ¼ 1; for a 6 y 6 c; ð6dÞ

oT
oy

ðx; 0Þ ¼ 0; for 0 6 x 6 1; ð6eÞ

oT e

oy
ðx; cÞ ¼ 0; for 0 6 x 6 1; ð6fÞ

T ðx; aÞ ¼ T eðx; aÞ; for 0 6 x 6 1; ð6gÞ

oT e

oy
ðx; aÞ ¼ kk

oT e

oy
ðx; aÞ; for 0 6 x 6 1; ð6hÞ

where kk = ke/k where k and ke are the thermal conduc-
tivities of the melt and the liquid encapsulant,
respectively. With boron oxide and molten indium–
phosphide, kk = 0.08772.

Eqs. (2)–(6) were solved using a Chebyshev spectral
collocation method with Gauss–Lobatto collocation
points in x and y. Since Eqs. (2a), (2e), (3a) and (3c)
are non-linear, we used a Newton–Raphson iterative
method. We used rescaled coordinates for our spectral
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collocation method. Our rescaled horizontal coordinate
is n = 2x � 1 so that �1 6 n 6 +1. In the melt, our re-
scaled vertical coordinate is g = (2y � a)/a so that
�1 6 g 6 +1. In the encapsulant, our rescaled vertical
coordinate is v = (2y � c � a)/(c � a) so that �1 6

v 6 +1. We use a sufficient number of collocation points
in order to resolve the velocity and temperature gradi-
ents. The number of collocation points in each direction
in both the melt and the encapsulant were increased
until the results were independent of these numbers.
Of course, the required number of collocation points in-
creased as B was increased because the thickness of the
boundary layers decreased and the velocity gradients in-
creased. The numbers of collocation points needed to re-
solve gradients in the parallel and Hartmann layers
increase as B increases. The Gauss–Lobatto collocation
points are coarse in the center of the domain at n = 0
and at g = 0 in the melt and at v = 0 in the encapsulant,
and the collocation points become finer as jnj, jgj or jvj
increase. For example, for B = 0.5 T and a = 0.3, we
used 41 collocation points in the horizontal direction,
41 collocation points in the vertical direction in the melt
and 41 collocation points in the vertical direction in the
encapsulant. When we increased the number of colloca-
tion points to 61 in each direction, the maximum value
of the streamfunction in the melt changed by
0.000087%, the minimum value of the streamfunction
in the encapsulant changed by 0.000021%, and the max-
imum value of the streamfunction in the encapsulant
changed by 0.0015%.
Fig. 2. Dimensional interfacial shear stress rxy (in Pa) versus n
with a = 0.3 for B = 0.5, 1, 2 and 5 T.
3. Results

During the liquid-encapsulated Czochralski process,
a molten semiconductor (melt) is contained in a crucible
which is heated by radio-frequency induction heating. In
order to keep the volatile component, i.e. P in InP, from
escaping, the melt is encapsulated with liquid boron
oxide. A single-crystal seed is lowered to the surface of
the melt and initiates solidification. The crystal grows
vertically downward into the melt and radially outward.
Once the crystal reaches the desired diameter, the crystal
is continuously ‘‘pulled’’ vertically upward until the en-
tire melt�s volume is solidified. Prior to solidification in
the liquid-encapsulated Czochralski process, the axisym-
metric melt is entirely encapsulated by the boron oxide.
After a single-crystal seed initiates solidification and the
crystal is pulled vertically upward, the encapsulant�s
depth increases and the melt�s depth decreases due to
solidification. Once the top of the crystal is pulled out
of the encapsulant, the encapsulant�s depth is constant
while the melt�s depth continues to decrease. The pur-
pose of the present paper is to illustrate the degree of
coupling for various magnetic field strengths so we only
present results for (c � a) = 0.2666 and for a melt depth
corresponding to the middle of growth for which
a = 0.3.

With the cold and hot walls along the left and right,
respectively, the temperature gradient drives counter-
clockwise circulations in both the melt and the encapsu-
lant. These circulations alone would lead to positive and
negative values of u in the encapsulant and melt, respec-
tively, adjacent to the interface. Therefore the shear
stress rxy along the interface is always positive, i.e., a
force to the left along the bottom of the encapsulant
and an equal force to the right along the top of the melt.
The competition between the two free convections, re-
flected by the continuity of u and of rxy along the inter-
face, determines whether u along the interface is positive
or negative. A positive value would reflect dominance by
the melt circulation which results in a clockwise circula-
tion in the encapsulant near the interface. For all cases
considered here, the interfacial u is positive which re-
flects a dominance by the free convection in the encaps-
ulant. This dominance increases as the magnetic field
strength increases.

In Fig. 2, we present the dimensional interfacial shear
stress for various magnetic flux densities. For B = 0.5 T,
the free convection in the melt is relatively strong and
produces a relatively large shear stress to the left along
the bottom of the encapsulant. As the magnetic field
strength is increased, the magnitude of the free convec-
tion in the melt decreases roughly as B�2, as reflected
by our choice for the characteristic velocity in Eq.
(1a). This is reflected in the maximum magnitude of
the melt velocity which is equal to 0.002733,
0.0009586, 0.0003461 and 8.045 · 10�5 m/s for B = 0.5,
1, 2 and 5 T, respectively, with a = 0.3.



Fig. 3. Temperature and streamfunction in the melt for B = 5 T
and a = 0.3. (a) T(n,g) and (b) w(n,g).

Fig. 4. Temperature and streamfunction in the encapsulant for
B = 5 T and a = 0.3. (a) Te(n,v) and (b) we(n,v).
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We present the contours of the temperature and the
streamfunction in the melt for B = 5 T and a = 0.3 in
Fig. 3(a) and (b), respectively. The vertical isotherms
in Fig. 3(a) reflect that the heat transfer is dominated
by conduction in the melt. In Fig. 3(b), the maximum
value of the streamfunction is 0.01120 and the circula-
tion is counterclockwise, where the hot fluid rises adja-
cent to the hot wall along n = +1, flows to the left
along g = +1, sinks adjacent to the cold wall along
n = �1 and flows to the right along g = �1. We present
the contours of the temperature and streamfunction in
the encapsulant in Fig. 4(a) and (b), respectively. The
vertical isotherms in Fig. 4(a) reflect that the heat trans-
fer is dominated by conduction in the encapsulant. In
Fig. 4(b), the maximum value of the streamfunction is
2.573 · 10�5 and the encapsulant flows in the counter-
clockwise direction. For this strong magnetic flux den-
sity, there is significant electromagnetic (EM) damping
of the melt motion, and the maximum magnitude of
the melt�s velocity is 16 times larger than that of the
encapsulant. The free convection in the encapsulant
drives a positive interfacial velocity in the melt and a
clockwise circulation inside the boundary layer along
g = +1. u = 0.07877 along the interface at n = 0. The
interfacial shear stress of the slow-moving melt decreases
the velocity of the encapsulant but does not drive flow in
the opposite direction.

When the magnetic flux density is decreased to
B = 1 T, there is less EM damping of the melt motion
and the velocity of the melt is larger. The maximum



Fig. 5. Streamfunction in the encapsulant we(n,v) for B = 1 T
and a = 0.3.

Fig. 6. Streamfunction in the encapsulant we(n,v) for B = 0.5 T
and a = 0.3.

Fig. 7. Maximum value of the streamfunction in the melt
versus magnetic field strength for the numerical and asymptotic
solutions.
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magnitude of the melt�s velocity is 244 times larger than
that of the encapsulant. The heat transfer is still domi-
nated by conduction in both the melt and the encapsu-
lant and the isotherms exactly resemble those in Figs.
3(a) and 4(a), respectively. The maximum values of the
streamfunction in the melt and in the encapsulant are
0.01124 and 2.225 · 10�5, respectively. The circulations
in both the melt and the encapsulant are counterclock-
wise. We present the contours of the streamfunction in
the encapsulant in Fig. 5. The free convection in the
encapsulant drives a positive interfacial velocity in the
melt and a clockwise circulation inside the boundary
layer along g = +1, u = 0.002321 along the interface at
n = 0. Although the melt moves more quickly in a 1 T
field compared with a 5 T field, the interfacial shear
stress more moderately decreases the velocity of the
encapsulant but does not drive flow in the opposite
direction.

When the magnetic flux density is decreased to
B = 0.5 T, there is significantly less EM damping of
the melt motion and the velocity of the melt is much lar-
ger. This is reflected in the maximum magnitude of the
melt�s velocity of 0.002733 m/s which is 966 times larger
than the maximum magnitude of the encapsulant�s
velocity. The heat transfer is still dominated by conduc-
tion in both the melt and the encapsulant, and the circu-
lation in the melt is counterclockwise. The maximum
value of the streamfunction in the encapsulant is
1.759 · 10�5. The circulation in the melt is still counter-
clockwise and the maximum value of the streamfunction
in the melt is 0.01148. As shown in Fig. 2, the interfacial
shear stress for B = 0.5 T is much larger than that for
the other magnetic flux densities considered in this inves-
tigation. This large shear stress causes some reversal of
the flow in the encapsulant adjacent to the interface at
n = ±1, which is reflected in the contours of the stream-
function in the encapsulant presented in Fig. 6.

We compare our numerical solution of the full gov-
erning equations to our asymptotic solution [14] which
is valid for Ha� 1. Therefore, our solution should ap-
proach that of Farrell and Ma [14] as we increase the
magnetic flux density. In Figs. 7–9, we present the max-
imum value of the streamfunction in the melt, the mini-
mum value of the streamfunction in the encapsulant,
and the maximum value of the streamfunction in the
encapsulant, respectively, versus magnetic flux density
calculated by the present numerical solution and by
the asymptotic solution.



Fig. 9. Maximum value of the streamfunction in the encaps-
ulant versus magnetic field strength for the numerical and
asymptotic solutions.

Fig. 8. Minimum value of the streamfunction in the encapsu-
lant versus magnetic field strength for the numerical and
asymptotic solutions.
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4. Conclusions

The temperature gradient drives counterclockwise
circulations in both the melt and encapsulant. These cir-
culations alone would lead to positive and negative val-
ues of the horizontal velocity in the encapsulant and
melt, respectively, near the interface. The competition
between the two free convections determines the direc-
tion of the horizontal velocity of the interface. For
a = 0.6 and B = 5 T, there is significant EM damping
of the melt motion and the encapsulant drives a positive
interfacial velocity and a small clockwise circulation in
the melt. For a = 0.6 and a much weaker field B =
0.5 T, the maximum velocity in the melt is nearly one
thousand times larger than that of the encapsulant, thus
causing some of the encapsulant to circulate in the
clockwise direction.
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